粒線體或粒體線(mitochondrion),是一種存在於大多數真核細胞中的由兩層膜包被的細胞器,[1]直徑在0.5到10微米左右。除了溶組織內阿米巴、籃氏賈第鞭毛蟲以及幾種微孢子蟲外,大多數真核細胞或多或少都擁有粒線體,但它們各自擁有的粒線體在大小、數量及外觀等方面上都有所不同。[2]這種細胞器擁有自身的遺傳物質和遺傳體系,但因其基因組大小有限,所以粒線體是一種半自主細胞器。粒線體是細胞內氧化磷酸化和合成三磷酸腺苷(ATP)的主要場所,為細胞的活動提供了能量,所以有「細胞動力工廠」之稱。[3]除了為細胞供能外,粒線體還參與諸如細胞分化、細胞資訊傳遞和細胞凋亡等過程,並擁有調控細胞生長和細胞周期的能力。[4] 英文中的「粒線體」(mitochodrion,複數形式為「mitochondria」)一詞是由希臘語中的「線」(「μίτος」或「mitos」)和「顆粒」(「χονδρίον」或「chondrion」)組合而成的。在「粒線體」這一名稱出現前後,「粒體」「球狀體」等眾多名字曾先後或同時被使用。[5][注 1]
目錄
概況
- 大小
- 形狀
- 數量
- 分布
- 組成
- 結構
歷史
粒線體的研究是從19世紀50年代末開始的。1857年,瑞士解剖學家及生理學家阿爾伯特·馮·科立克在肌肉細胞中發現了顆粒狀結構。[17]另外的一些科學家在其他細胞中也發現了同樣的結構,證實了科立克的發現。德國病理學家及組織學家理察·阿爾特曼將這些顆粒命名為「原生粒」(bioblast)並於1886年發明了一種鑒別這些顆粒的染色法。阿爾特曼猜測這些顆粒可能是共生於細胞內的獨立生活的細菌。[18]
1898年,德國科學家卡爾·本達因這些結構時而呈線狀時而呈顆粒狀[注 2],所以用希臘語中「線」和「顆粒」對應的兩個詞——「mitos」和「chondros」——組成「mitochondrion」來為這種結構命名,這個名稱被沿用至今。[19]一年後,美國化學家萊昂諾爾·米歇利斯開發出用具有還原性的健那綠染液為粒線體染色的方法,並推斷粒線體參與某些氧化反應。[20]這一方法於1900年公布,並由美國細胞學家埃德蒙·文森特·考德里推廣。[21]德國生物化學家奧托·海因里希·沃伯格成功完成粒線體的粗提取且分離得到一些催化與氧有關的反應的呼吸酶,並提出這些酶能被氰化物(如氫氰酸)抑制的猜想。[22]
英國生物學家大衛·基林在1923年至1933年這十年間對粒線體內的氧化還原鏈(redox chain)的物質基礎進行探索,辨別出反應中的電子載體——細胞色素。[23]
沃伯格於1931年因「發現呼吸酶的性質及作用方式」被授予諾貝爾生理學或醫學獎。[24]
結構
外膜
粒線體外膜是位於粒線體最外圍的一層單位膜,厚度約為6-7nm。其中磷脂與蛋白質的質量為0.9:1,與真核細胞細胞膜的同一比例相近。粒線體外膜中酶的含量相對較少,其標誌酶為單胺氧化酶。粒線體外膜包含稱為「孔蛋白」的整合蛋白,其內部通道寬約2-3nm,這使粒線體外膜對分子量小於5000Da的分子完全通透。分子量大於上述限制的分子則需擁有一段特定的信號序列以供識別並通過外膜轉運酶(translocase of the outer membrane,TOM)的主動運輸來進出粒線體。[25]粒線體外膜主要參與諸如脂肪酸鏈延伸、腎上腺素氧化以及色胺酸生物降解等生化反應,它也能同時對那些將在粒線體基質中進行徹底氧化的物質先行初步分解。細胞凋亡過程中,粒線體外膜對多種存在於粒線體膜間隙中的蛋白的通透性增加,[26]使致死性蛋白進入細胞質基質,促進了細胞凋亡。[27]高分辨三維X射線攝影可見內質網及粒線體之間的有20%膜是緊密接觸的,[28]在這些接觸位點上粒線體外膜與內質網膜通過某些蛋白質相連,形成稱為「粒線體結合內質網膜」(mitochondria-associated ER-membrane,MAM)的結構。該結構在脂質的相互交換和粒線體與內質網間的鈣離子信號傳導等過程中都有重要作用。[29]
膜間隙
粒線體膜間隙是粒線體外膜與粒線體內膜之間的空隙,寬約6-8nm,其中充滿無定形液體。由於粒線體外膜含有孔蛋白,通透性較高,而粒線體內膜通透性較低,所以粒線體膜間隙內容物的組成與細胞質基質十分接近,含有眾多生化反應受質、可溶性的酶和輔助因子等。粒線體膜間隙中還含有比細胞質基質中濃度更高的腺苷酸激酶、單磷酸激酶和二磷酸激酶等激酶,其中腺苷酸激酶是粒線體膜間隙的標誌酶。粒線體膜間隙中存在的蛋白質可統稱為「粒線體膜間隙蛋白質」,這些蛋白質全部在細胞質基質中合成。[30]內膜
粒線體內膜是位於粒線體外膜內側、包裹著粒線體基質的單位膜。粒線體內膜中蛋白質與磷脂的質量比約為0.7:0.3,並含有大量的心磷脂(心磷脂常為細菌細胞膜的成分[31])。粒線體內膜的某些部分會向粒線體基質摺疊形成粒線體皺褶。粒線體內膜的標誌酶是細胞色素氧化酶。粒線體內膜含有比外膜更多的蛋白質(超過151種,約佔粒線體所含所有蛋白質的五分之一),所以承擔著更複雜的生化反應。存在於粒線體內膜中的幾類蛋白質主要負責以下生理過程:特異性載體運輸磷酸、谷胺酸、鳥胺酸、各種離子及核苷酸等代謝產物和中間產物;內膜轉運酶(translocase of the inner membrane,TIM)運輸蛋白質;參與氧化磷酸化中的氧化還原反應;參與ATP的合成;控制粒線體的分裂與融合。[32]
皺褶
粒線體皺褶簡稱「皺褶」,是粒線體內膜向粒線體基質折褶形成的一種結構。粒線體皺褶的形成增大了粒線體內膜的表面積。 在不同種類的細胞中,粒線體皺褶的數目、形態和排列方式可能有較大差別。粒線體皺褶主要有幾種排列方式,分別稱為「片狀皺褶」(lamellar cristae)、「管狀皺褶」(tubular cristae)和「泡狀皺褶」(vesicular cristae)。[33]片狀排列的粒線體皺褶主要出現在高等動物細胞的粒線體中,這些片狀皺褶多數垂直於粒線體長軸;管狀排列的粒線體皺褶則主要出現在原生動物和植物細胞的粒線體中。有研究發現,睾丸間質細胞中既存在層狀皺褶也存在管狀皺褶。[34]粒線體皺褶上有許多有柄小球體,即粒線體基粒,基粒中含有ATP合酶,能利用呼吸鏈產生的能量合成三磷酸腺苷。所以需要較多能量的細胞,粒線體皺褶的數目一般也較多。但某些形態特殊的粒線體皺褶由於沒有ATP合酶,所以不能合成ATP。[35]基質
粒線體基質是粒線體中由粒線體內膜包裹的內部空間,其中含有參與三羧酸循環、脂肪酸氧化、胺基酸降解等生化反應的酶等眾多蛋白質,所以較細胞質基質黏稠。[注 3][36]蘋果酸去氫酶是粒線體基質的標誌酶。粒線體基質中一般還含有粒線體自身的DNA(即粒線體DNA)、RNA和核醣體(即粒線體核醣體)。粒線體DNA是粒線體中的遺傳物質,呈雙鏈環狀,並可與多種蛋白質結合成高度緊密的粒線體擬核。一個粒線體中可有一個或數個粒線體DNA分子。粒線體RNA是粒線體DNA的表現產物,RNA編輯也普遍存在於粒線體RNA中,是粒線體產生功能蛋白所必不可少的過程。[37]粒線體核醣體是存在於粒線體基質內的一種核醣體,負責完成粒線體內進行的轉譯工作。粒線體核醣體的沉降係數介干55S-56S之間。一般的粒線體核醣體由28S核醣體亞基(小亞基)和39S核醣體亞基(大亞基)組成。[38]在這類核醣體中,rRNA約佔25%,核醣體蛋白質約佔75%。粒線體核醣體是已發現的蛋白質含量最高的一類核醣體。粒線體基質中存在的蛋白質統稱為「粒線體基質蛋白質」,包括DNA聚合酶、RNA聚合酶、檸檬酸合成酶以及三羧酸循環酶系中的酶類。大部分粒線體基質蛋白是由核基因編碼的。粒線體基質蛋白不一定只在粒線體基質中表現,它們也可以在粒線體外表現。[39]
功能
能量轉化
粒線體是真核生物進行氧化代謝的部位,是醣類、脂肪和胺基酸最終氧化釋放能量的場所。粒線體負責的最終氧化的共同途徑是三羧酸循環與氧化磷酸化,分別對應有氧呼吸的第二、三階段。[注 4]細胞質基質中完成的糖解作用和在粒線體基質中完成的三羧酸循環在會產還原型菸鹼醯胺腺嘌呤二核苷酸(reduced nicotinarnide adenine dinucleotide,NADH)和還原型黃素腺嘌呤二核苷酸(reduced flavin adenosine dinucleotide,FADH2)等高能分子,而氧化磷酸化這一步驟的作用則是利用這些物質還原氧氣釋放能量合成ATP。在有氧呼吸過程中,1分子葡萄糖經過糖解作用、三羧酸循環和氧化磷酸化將能量釋放後,可產生30-32分子ATP(考慮到將NADH運入粒線體可能需消耗2分子ATP)。[40]如果細胞所在環境缺氧,則會轉而進行無氧呼吸。此時,糖解作用產生的丙酮酸便不再進入粒線體內的三羧酸循環,而是繼續在細胞質基質中反應(被NADH還原成乙醇或乳酸等發酵產物),但不產生ATP。所以在無氧呼吸過程中,1分子葡萄糖只能在第一階段產生2分子ATP。三羧酸循環
糖解作用中生成的每分子丙酮酸會被主動運輸轉運穿過粒線體膜。進入粒線體基質後,丙酮酸會被氧化,並與輔酶A結合生成CO2、還原型輔酶Ⅰ和乙醯輔酶A。乙醯輔酶A是三羧酸循環(也稱為「檸檬酸循環」或「Krebs循環」)的初級受質。參與該循環的酶除位於粒線體內膜的琥珀酸去氫酶外都游離於粒線體基質中。[41]在三羧酸循環中,每分子乙醯輔酶A被氧化的同時會產生起始電子傳遞鏈的還原型輔因子(包括3分子NADH和1分子FADH2)以及1分子三磷酸鳥苷(GTP)。氧化磷酸化
NADH和FADH2等具有還原性的分子(在細胞質基質中的還原當量可從由逆向轉運蛋白構成的蘋果酸-天門冬胺酸穿梭系統或通過磷酸甘油穿梭作用進入電子傳遞鏈)在電子傳遞鏈裡面經過幾步反應最終將氧氣還原並釋放能量,其中一部分能量用於生成ATP,其餘則作為熱能散失。在粒線體內膜上的酶複合物(NADH-泛醌還原酶、泛醌-細胞色素c還原酶、細胞色素c氧化酶)利用過程中釋放的能量將質子逆濃度梯度泵入粒線體膜間隙。雖然這一過程是高效的,但仍有少量電子會過早地還原氧氣,形成超氧化物等活性氧(ROS),這些物質能引起氧化應激反應使粒線體性能發生衰退。[42]當質子被泵入粒線體膜間隙後,粒線體內膜兩側便建立起了電化學梯度,質子就會有順濃度梯度擴散的趨勢。質子唯一的擴散通道是ATP合酶(呼吸鏈複合物V)。當質子通過複合物從膜間隙回到粒線體基質時,電勢能被ATP合酶用於將ADP和磷酸合成ATP。這個過程被稱為「化學滲透」,是一種協助擴散。彼得·米切爾就因為提出了這一假說而獲得了1978年諾貝爾獎。1997年諾貝爾獎獲得者保羅·博耶和約翰·瓦克闡明了ATP合酶的機制。
儲存鈣離子
粒線體可以儲存鈣離子,可以和內質網、細胞外基質等結構協同作用,[43]從而控制細胞中的鈣離子濃度的動態平衡。[44]粒線體迅速吸收鈣離子的能力使其成為細胞中鈣離子的緩衝區。[45]在粒線體內膜膜電位的驅動下,鈣離子可由存在於粒線體內膜中的單向運送體輸送進入粒線體基質;[46]排出粒線體基質時則需要鈉-鈣交換蛋白的輔助或通過鈣誘導鈣釋放(calcium-induced-calcium-release,CICR)機制。[47]在鈣離子釋放時會引起伴隨著較大膜電位變化的「鈣波」(calcium wave),能激活某些第二信使系統蛋白,協調諸如突觸中神經遞質的釋放及內分泌細胞中激素的分泌。粒線體也參與細胞凋亡時的鈣離子訊息傳遞。[48]其他功能
除了合成ATP為細胞提供能量等主要功能外,粒線體還承擔了許多其他生理功能。- 調節膜電位並控制細胞程式性死亡:[49]當粒線體內膜與外膜接觸位點處生成了由己糖激酶(細胞質基質蛋白)、外周苯並二氮受體和電壓依賴陰離子通道(粒線體外膜蛋白)、肌酸激酶(粒線體膜間隙蛋白)、ADP-ATP載體(粒線體內膜蛋白)和親環蛋白D(粒線體基質蛋白)等多種蛋白質組成的通透性轉變孔道(PT孔道)後,會使粒線體內膜通透性提高,引起粒線體跨膜電位的耗散,從而導致細胞凋亡。[50]粒線體膜通透性增加也能使誘導凋亡因子(AIF)等分子釋放進入細胞質基質,破壞細胞結構。[51]
起源學說
對於粒線體的起源有兩種假說,分別為內共生學說與非內共生學說:內共生學說
該學說認為粒線體起源於被另一個細胞吞噬的粒線體祖先——原粒線體——一種能進行三羧酸循環和電子傳遞的革蘭氏陰性菌。這種好氧細菌是變形菌門下的一個分支,與立克次氏體有密切關係。原粒線體被吞噬後,並沒有被消化,而是與宿主細胞形成了共生關係——寄主可以從宿主處獲得更多營養,而宿主則可使用寄主產生的能量——這種關係增加了細胞的競爭力,使其可以適應更多的生存環境。在長期對寄主和宿主都有利的互利共生中,原粒線體逐漸演變形成了粒線體,使宿主細胞中進行的糖解作用和原粒線體中進行的三羧酸循環和氧化磷酸化成功耦合。[54]有研究認為,這種共生關係大約發生在17億年以前,[55],與進化趨異產生真核生物和古細菌的時期幾乎相同。[56]但粒線體與真核生物細胞核出現的先後關係仍存在爭議。[57]現已發現支持內共生學說的證據包括:
- 粒線體擁有自己DNA,其形狀與細菌的環狀DNA類似;
- 粒線體的DNA上編碼了在粒線體中表現的蛋白質;
- 粒線體的遺傳密碼與變形菌門細菌的遺傳密碼更為相似[58];
- 粒線體核醣體不論在大小還是在結構上都與細菌70S核醣體較為相似,而與真核細胞的80S核醣體差異較大。[59]
非內共生學說
非內共生學說又稱為「細胞分化學說」,認為粒線體的發生是由細胞膜或內質網膜等生物膜系統中的膜結構演變而來的。非內共生學說有幾種模型,主流的模型認為在細胞進化的最初階段,原核細胞基因組複製後並不伴有典型的無絲分裂,而是擬核附近的細胞膜內陷形成雙層膜,將其中一個基因組包圍、隔離,進而發生細胞分裂。未分裂出來的子細胞則緩慢演化為細胞核、粒線體和葉綠體等高度特化的細胞結構。遺傳學
基因組
粒線體的基因組中基因的數量很少,規模遠小於細菌基因組。但內共生學說認為粒線體源於被吞噬的細菌,那麼兩者基因組規模應該較為相似。為了解釋這一現象,有猜想認為原粒線體的基因除了丟失了一些外,大部分轉移到了宿主細胞的細胞核中,[60]所以核基因編碼了在超過98%的粒線體表現內的蛋白質。[61]某些沒有粒線體中不含DNA的生物(如隱孢子蟲等)的mtDNA可能已完全丟失或整合入核DNA中。[62]粒線體DNA(mtDNA)在粒線體中有2-10個備份,[63]呈雙鏈環狀(但也有呈線狀的特例存在[64])。mtDNA長度一般為幾萬至數十萬鹼基對,人類mtDNA的長度為16,569bp,[65]擁有有37個基因,編碼了兩種rRNA(12S rRNA和16S rRNA)、22種tRNA(同樣轉運20種標準胺基酸,只是白胺酸和絲胺酸都有兩種對應的tRNA)以及13種多肽(呼吸鏈複合物Ⅰ、Ⅲ、Ⅳ、Ⅴ的亞基)。[66]mtDNA的長度和粒線體基因組的大小因物種而異,表一列出了幾種模式生物mtDNA的長度:生物 | 學名 | mtDNA長度(bp) |
---|---|---|
芽殖酵母 | Saccharomyces cerevisiae | 85779[67] |
裂殖酵母 | Schizosaccharomyces pombe | 19431[68] |
阿拉伯芥 | Arabidopsis thaliana | 366924[69] |
水稻 | Oryza sativa | 490520[70] |
秀麗隱桿線蟲 | Caenorhabditis elegans | 13794[71] |
黑腹果蠅 | Drosophila melanogaster | 19517[72] |
非洲爪蟾 | Xenopus laevis | 17553[73] |
小鼠 | Mus musculus | 16300[74] |
粒線體基因組通常都是存在於同一個mtDNA分子中,但少數生物的粒線體基因組卻分別儲存在多個不同的mtDNA中。例如,人虱的粒線體基因組就分開儲藏於18個長約3-4kb的微型環狀DNA中,每個DNA分子只分配到了1-3個基因。[83]這些微型環狀DNA之間也存在著同源或非同源的基因重組現象,但成因未知。[84]
遺傳密碼
粒線體中擁有一套獨特的遺傳系統。在進行人類粒線體遺傳學研究時,人們確認粒線體的遺傳密碼與通用遺傳密碼也有些許差異。[85]自從上述發現證明並不只存在單獨的一種遺傳密碼之後,許多有輕微不同的遺傳密碼都陸續連發現。[86]在粒線體的遺傳密碼中最常見的差異是:AUA由終止密碼子變為甲硫胺酸的密碼子、UGA由終止密碼子變為色胺酸的密碼子、AGA和AGG由精胺酸的密碼子變為終止密碼子(植物等生物的粒線體遺傳密碼另有差異,參見表二)。[87]此外,也有某些特例是只涉及終止密碼子的,在山羊支原體粒線體遺傳密碼的UGA由終止密碼子變為色胺酸的密碼子,而且使用頻率比UGG更高;[88]四膜蟲粒線體遺傳密碼里只有UGA一種終止密碼子,其UAA和UAG由終止密碼子變為谷氨醯胺的密碼子;而游仆蟲粒線體遺傳密碼里則只有UAA和UAG兩種終止密碼子,其UGA由終止密碼子變為半胱胺酸的密碼子。[89]通過粒線體遺傳密碼和通用遺傳密碼的對比,可以推導出遺傳密碼演化過程的可能模式。[90]密碼子 | 通用密碼 | 粒線體遺傳密碼 | |||
真菌 | 植物 | 無脊椎動物 | 哺乳動物 | ||
UGA | 終止密碼子 | 色胺酸 | 終止密碼子 | 色胺酸 | 色胺酸 |
AUA | 異白胺酸 | 甲硫胺酸 | 異白胺酸 | 甲硫胺酸 | 甲硫胺酸 |
CUA | 白胺酸 | 蘇胺酸 | 白胺酸 | 白胺酸 | 白胺酸 |
AGA、AGG | 精胺酸 | 精胺酸 | 精胺酸 | 絲胺酸 | 終止密碼子 |
分裂與融合
粒線體的融合是與分裂協同進行的,過程高度保守,需要在多種蛋白質的精確調控下完成。[91]兩者一般保持動態平衡,這種平衡對維持粒線體正常的形態、分布和功能十分重要。粒線體融合與分裂間的失衡可產生巨型粒線體,這種過大的粒線體常見於病變的肝細胞、惡性營養不良患者的胰臟細胞和白血病患者骨髓的巨噬細胞中。[92]分裂異常會導致粒線體破碎,而融合異常則會導致粒線體形態延長,兩者都會影響粒線體的功能。[93]分裂與融合活動異常的粒線體膜電位通常會降低,並最終經粒線體自噬作用清除。粒線體的分裂在真核細胞內經常發生。為了保證在細胞發生分裂後每個子細胞都能繼承母細胞的粒線體,母細胞中的粒線體在一個細胞周期需要至少複製一次。即使是在不再分裂的細胞內,粒線體為了填補已老化的粒線體造成的空缺也需要進行分裂。[94]的粒線體以與細菌的無絲分裂類似的方式進行增殖,可細分為三種模式:[95]
- 間壁分離(見於部分動物和植物粒線體):粒線體內部首先由內膜形成隔,隨後外膜的一部分內陷,插入到隔的雙層膜之間,將粒線體一分為二。
- 收縮分離(見於蕨類植物和酵母菌粒線體):粒線體中部先縊縮同時向兩端不斷拉長然後一分為二。
- 出芽分離(見於蘚類植物和酵母菌粒線體):粒線體上先出現小芽,小芽脫落後成長、發育為成熟粒線體。
群體遺傳學
因為mtDNA幾乎不發生基因重組,所以遺傳學家長期將其作為研究群體遺傳學與進化生物學的資訊來源。[99]所有mtDNA是以單一單元(單體型)進行遺傳的(而不像細胞核中的DNA儲存在多個染色體中),它們在親本與子代之間的傳遞關係並不複雜,因此不同個體間mtDNA的聯繫便可以利用系統發生樹來表現。[100]而從這些系統發生樹的形態中人們可以得知種群的進化史。人類進化遺傳學中運用分子鐘技術推算出了粒線體夏娃最晚出現的時間[101](這個成果被認為是人類由非洲單地起源的有力依據[102])是利用mtDNA研究群體遺傳學的典型例子。另外一個例子是對尼安德特人骨骼化石中mtDNA測序。該測序的結果顯示,尼安德特人與解剖學意義上的現代人在mtDNA序列上有較大差異,說明兩者間缺乏基因交流。[103]雖然mtDNA在遺傳學研究中佔據了重要地位,但是mtDNA序列中的資訊只能反映所考察的群體中的雌性成員的演化進程,而不能代表整個種群。這一缺陷需要由對父系遺傳序列(如Y染色體上的非重組區)的測序彌補。[104]廣義上來說,只有既考慮了mtDNA又考慮了核DNA的遺傳學研究才能為種群的進化史提供全面的線索。[105]機能障礙與疾病
正常細胞含數個至千餘個相同的粒線體,如細菌大小。研究證實,在老人身上,其身體細胞內粒線體的含量有明顯減少。粒線體負責製造腺苷三磷酸ATP, 如同發電機一般,是身體能量的來源,其在轉換為ATP能量的過程需動用電子傳遞。如果沒有正確捕捉到電子,逸出的電子會與氧分子結合成超氧自由基,很容易 破壞鹼基而造成粒線體DNA突變,進而累積一些細胞的衰老或疾病因子,像是一些老年疾病:糖尿病、心臟病、關節炎等,都與粒線體DNA變異有關。粒線體缺陷疾病
粒線體病(mitochondrial disorders)是遺傳缺損引起粒線體代謝酶缺陷,致使ATP 合成障礙、能量來源不足導致的一組異質性病變。粒線體是密切與能量代謝相關的細胞器,無論是細胞的成活(氧化磷酸化)和細胞死亡(凋亡)均與粒線體功能有關,特別是呼吸鏈的氧化磷酸化異常與許多人類疾病有關。
Luft 等(1962)首次報導一例粒線體肌病,生化研究證實為氧化磷酸化脫耦聯引起。Anderson(1981)測定人類粒線體DNA(mtDNA)全長序 列,Holt(1988)首次發現粒線體病患者mtDNA 缺失,證實mtDNA 突變是人類疾病的重要病因,建立了有別於傳統孟德爾遺傳的粒線體遺傳新概念。
根據粒線體病變部位不同可分為:
1.粒線體肌病(mitochondrial myopathy) 粒線體病變侵犯骨骼肌為主。
2.粒線體腦肌病(mitochondrial encephalomyopathy) 病變同時侵犯骨骼肌和中樞神經系統。
3.粒線體腦病 病變侵犯中樞神經系統為主。
0 意見:
張貼留言